Abstract

Chronic hard-healing diabetic wounds constitute an immense health and economic burden on global health. Great efforts have been put to develop multifunctional drug delivery systems for improving wound healing. Here, inspired by the physiologically immunogenic response processes, we presented a novel hierarchically structured delivery system with macrophage-like nanovesicle (NV) encapsulation for promoted diabetic wound healing. The NVs were assembled by the fusion membranes of macrophage and synthetic lipid; while the hierarchically structured delivery system was constructed by encapsulating these NVs inside hydrogel microspheres (NV-MPs) using microfluidics. The hydrogel MPs could protect and release the encapsulated NVs in the oxidative stress environment of the diabetic wound. As the NVs possessed the ability of pro-inflammatory cytokine neutralization and intracellular delivery of their loaded simvastatin (SIM), the bioinspired hierarchically structured delivery system could greatly enhance the migration ability and tube formation of human umbilical vein endothelial cells (HUVECs). Based on these features, the practical performances of the resultant delivery system were demonstrated in full-thickness cutaneous wounds in type I diabetic rats, which exhibited desirable wound healing conditions by effectively reducing inflammation levels and facilitating blood vessel formation and collagen deposition in the wound tissues. Thus, we believe that the proposed bioinspired hierarchical delivery system would be an ideal carrier for treating wound healing and other tissue regeneration-related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.