Abstract

AbstractAdditive manufacturing has many advantages in creating highly complex customized structures. In this study, a low‐cost multiscale stereolithography technology that can print a macroscale object with microscale surface structures with high throughput is demonstrated. The developed multiscale stereolithography is realized by dynamic switching of laser spot size and adaptively sliced layer thickness. An optical filter based on subwavelength resonance grating is used to modify laser spot size for lasers with different wavelengths and achieves a maximum resolution of 37 µm. The multiscale stereolithography process has 4.4× throughput improvement compared with the traditional stereolithography process with a single laser spot. For proof‐of‐concept testing, artificial shark skins with microriblet features are designed and 3D printed. In pipe flow experiments, the 3D printed shark skin demonstrates almost 10% average fluid drag reduction. Artificial lotus leaf surfaces are also 3D printed to demonstrate superhydrophobic property. This new process has the potential to serve as a powerful tool that can bring bioinspired structures into real‐life applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.