Abstract

The human body can be viewed as an organism consisting of a variety of cellular and non-cellular materials interacting in a highly ordered manner. Its complex and hierarchical nature inspires the multi-level recapitulation of the human body in order to gain insights into the inner workings of life. While traditional cell culture models have led to new insights into the cellular microenvironment and biological control in vivo, deeper understanding of biological systems and human pathophysiology requires the development of novel model systems that allow for analysis of complex internal and external interactions within the cellular microenvironment in a more relevant organ context. Engineering organ-on-chip systems offers an unprecedented opportunity to unravel the complex and hierarchical nature of human organs. In this chapter, we first highlight the advances in microfluidic platforms that enable engineering of the cellular microenvironment and the transition from cells-on-chips to organs-on-chips. Then, we introduce the key features of the emerging organs-on-chips and their proof-of-concept applications in biomedical research. We also discuss the challenges and future outlooks of this state-of-the-art technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.