Abstract

The way Nature designs, processes and assembles molecular building blocks to fabricate high performance materials with a minimum of resources is a suitable model for the design of drug delivery systems (DDS) with advanced functionalities. Bioinspired preparation methods that involve the use of superhydrophobic surfaces, layer-by-layer assembly or protein-driven growth are being successfully implemented to create a wide range of polymeric and hybrid structures. Mimicking the surface, shape, texture and movement of cells and microorganisms help to overcome phagocytosis and attain efficient targeting of the drug carriers, while transposition of the feed-back regulation mechanisms and the functions of membrane channels and physiological receptors may notably enhance the spatiotemporal control of drug release. These aspects are addressed in the present review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.