Abstract
Inspired by the hierarchical structure and excellent mechanical performance of nacre, LDH nanosheets with an appropriate aspect ratio to withstand significant loads and at the same time allow for rupture under the pull-out mode were synthesized as artificial building blocks for the fabrication of nacre-like films. Multilayered PVA/LDH films with a high tensile strength and ductility were prepared for the first time by bottom-up layer-by-layer assembly of pretreated LDH nanosheets and spin-coating of PVA. The weight fraction of inorganic LDH platelets in the hybrid PVA/LDH films (wp) was controlled by changing the concentration of PVA solution applied in the spin-coating process. The resulting films revealed that the PVA/LDH hybrid films were piled close together to form a well-defined stratified structure resembling the brick-and-mortar structure of natural nacre. In the hybrid films, the content of inorganic LDH platelets was comparable to the value in nacre, up to 96.9 wt %. It could be clearly seen that the mechanical performance of the as-prepared PVA/LDH films was greatly improved by increasing the rigid building-block LDHs. The tensile strength of the 2 wt % PVA/LDH hybrid film reached a value of 169.36 MPa, thus exceeding the strength of natural nacre and reaching 4 times that of a pure PVA film. Meanwhile, its elastic modulus was comparable to that of lamellar bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.