Abstract
Förster resonance energy transfer (FRET) has been widely used for monitoring drug release from nanoparticles (NPs). To understand the drug release from bioinspired drug-core silica-shell NPs, we synthesised two types of NPs using the dual-functional peptide SurSi via biosilicification for the first time, i.e., silica NP conjugated with FRET (Cy3 and Cy5) molecules, and FRET-core (DiO and DiI) silica-shell NP with different shell thicknesses (18 and 41 nm). The release kinetics of these two types of NPs were investigated under different conditions, including fetal bovine serum (FBS) and in cells, to mimic the drug release during blood circulation and intracellularly. Two different drug release mechanisms were identified. Cargo diffusion dominated the release during circulation, while the degradation of silica shell played a key role in drug release intracellularly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.