Abstract

Evolution-derived natural compounds have been inspirational for design of numerous pharmaceuticals, e.g., penicillins and tetracyclines. Herein, we present a bioinspired strategy to design peptide dendrimers for the effective therapy of E. coli infections where the selection of appropriate amino acids and the mode of their assembly are based on the information gained from research on membranolytic natural antimicrobial peptides (AMP's). On the molecular level two opposite effects were explored: the effect of multiple positive charges necessary for membrane disintegration was equilibrated by the anchoring role of tryptophanes. Indeed, a series of Trp-terminated dendrimers exhibited high potency against clinical isolates of antibiotic resistant ESBL E. coli strains, stability in human plasma along with very low hemo- and genotoxicity. Investigation of the underlying antimicrobial mechanism indicated that the dendrimers studied at minimal inhibitory concentration showed weak permeability toward membranes. Solid-state 2D NMR studies revealed their presence on and inside the model membranes. Therefore, their biological properties might be explained by targeting of extra- or intracellular receptors. Our results point to a new approach to design novel branched antimicrobials with high therapeutic index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call