Abstract

IntroductionIt aimed to explore the diversity of gut microbiota (GM) and the effect of different microbiota on insulin resistance in diabetes mellitus (DM) patients through bioinformatics analysis. Material and Method: Microarray data were obtained from GEO database. GM samples from DM patients and healthy controls were collected, and 16S rRNA gene sequencing was carried out adopting high-throughput sequencing technology. The differential expression genes were screened using the Qlucore Omics Explorer 3.0 software. Subsequently, online tools such as STRING and DAVID were utilized for bioinformatics analysis of the differential expression genes. The differences in bacterial diversity between DM patients and healthy controls were evaluated by analyzing the diversity indicators of the microbiota, such as Shannon and Chao1 indexes. Differential abundance and functional prediction analysis were adopted to explore the different microbiota and its possible metabolic pathways between DM patients and controls. And differences in insulin resistance in specific bacterial taxa were analyzed. Result: GM diversity between DM patients and controls had significant differences. GM diversity was lower in DM patients compared with controls, as indicated by a decrease in Shannon and Chao1 indexes. The differential abundance analysis showed that there were multiple different bacterial communities between DM patients and controls, including some bacterial communities at the genus-level. Functional prediction analysis also revealed potential metabolic pathways related to GM and insulin resistance in DM patients. HEXB, ZC3H12A, CCR, CXCR3, GBR10, CDK9, TXN, IGFBP3, PDHA1, and NDUFB3 genes may be potential targets for treatment. Conclusion: There are differences in GM diversity between DM patients and healthy controls, and the different microbiota may be related to the occurrence and development of insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.