Abstract
Tobacco smoke is a recognized teratogen, which increases the risk for hemifacial microsomia (HFM) of the fetus during maternal pregnancy. The present study aimed to explore potential mechanisms and verify hub genes of HFM associated with smoke and tobacco smoke pollution (TSP) via bioinformatics methods. Hemifacial microsomia and smoke and TSP pathogenic genes were obtained. A protein-protein interactional (PPI) network was constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and molecular complex detection were performed by Metascape. Finally, we used the cytoHubba plug-in to screen the hub genes. A total of 43 HFM genes and 50 optimal smoke candidate genes were selected. Functional enrichment analysis largely focused on tissue morphogenesis and development. Two modules were identified from the PPI network, and 10 hub genes were screened out. The genes most relevant to smoke-induced HFM pathogenesis included TP53 , ESR1 , ESR2 , and HNRNPL. This study identified some significant hub genes, pathways, and modules of HFM related to smoke by bioinformatics analyses. Our results suggest that the TP53 , ESR1 , ESR2 , and HNRNPL gene subfamilies may have played a major role in HFM induced by smoke and TSP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.