Abstract

Background Congenital scoliosis (CS) represents the congenital defect disease, and poor segmental congenital scoliosis (PSCS) represents one of its types. Delayed intervention can result in disability and paralysis. In this study, we would identify the core biomarkers for PSCS progression through bioinformatics analysis combined with experimental verification. Methods This work obtained the GSE11854 expression dataset associated with somite formation in the GEO database, which covers data of 13 samples. Thereafter, we utilized the edgeR of the R package to obtain DEGs in this dataset. Then, GO annotation, KEGG analyses, and DO annotation of DEGs were performed by “clusterProfiler” of the R package. This study performed LASSO regression for screening the optimal predicting factors for somite formation. Through RNA sequencing based on peripheral blood samples from healthy donors and PSCS cases, we obtained the RNA expression patterns and screen out DEGs using the R package DESeq2. The present work analyzed COL27A1 expression in PSCS patients by the RT-PCR assay. Results A total of 443 genes from the GSE11854 dataset were identified as DEGs, which were involved in BP associated with DNA replication, CC associated with chromosomal region, and MF associated with ATPase activity. These DEGs were primarily enriched in the TGF-β signaling pathway and spinal deformity. Further, LASSO regression suggested that 9 DEGs acted as the signature markers for somite formation. We discovered altogether 162 DEGs in PSCS patients, which were involved in BP associated with cardiac myofibril assembly and MF associated with structural constituent of muscle. However, these 162 DEGs were not significantly correlated with any pathways. Finally, COL27A1 was identified as the only intersected gene between the best predictors for somite formation and PSCS-related DEGs, which was significantly downregulated in PSCS patients. Conclusion This work sheds novel lights on DEGs related to the PSCS pathogenic mechanism, and COL27A1 is the possible therapeutic target for PSCS. Findings in this work may contribute to developing therapeutic strategies for PSCS.

Highlights

  • Congenital scoliosis (CS), a congenital vertebral malformation, is caused by abnormal vertebral body development or poor segmentation during embryonic somatoplasty [1]

  • CS is defined as a disorder with an abnormality in vertebral body structure, which further results in a Cobb angle greater than 10 degrees in the spine

  • Using the R package “DESeq2”, we identified poor segmental congenital scoliosis (PSCS)-related Differentially Expressed Genes (DEGs) between 3 PSCS patients and 2 healthy subjects based on the abovementioned thresholds

Read more

Summary

Introduction

Congenital scoliosis (CS), a congenital vertebral malformation, is caused by abnormal vertebral body development or poor segmentation during embryonic somatoplasty [1]. A total of 443 genes from the GSE11854 dataset were identified as DEGs, which were involved in BP associated with DNA replication, CC associated with chromosomal region, and MF associated with ATPase activity. These DEGs were primarily enriched in the TGF-β signaling pathway and spinal deformity. We discovered altogether 162 DEGs in PSCS patients, which were involved in BP associated with cardiac myofibril assembly and MF associated with structural constituent of muscle. These 162 DEGs were not significantly correlated with any pathways. Findings in this work may contribute to developing therapeutic strategies for PSCS

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.