Abstract

Insufficient blood supply to the brain causes a transient ischemic attack (TIA) or a stroke. One of the causes to insufficient blood supply is cerebral artery stenosis. In this study, the feasibility of bioimpedance for monitoring such stenosis was analyzed. Simulations were conducted on a realistic numerical model of the head, focusing on the left middle cerebral artery (LMCA). Tissues were assumed to act as linear isotropic volume conductors, and the quasi-static approximation was applied. Electrical potentials were calculated by solving Poisson's equation, using the finite volume method (FVM) and the successive over relaxation (SOR) method. The best sensitivity found was 0.471μV/% stenosis, using this electrode configuration: one injector near the left eye and the other injector near the right ear, one measurement position near the left eye and the other one in the right ear, keeping a distance of at least 2.5cm between measurement and injection positions. The maximal sensitivity achieved in the numerical model under the applied assumptions supports the feasibility of bioimpedance technique for monitoring cerebral artery stenosis. However, according to sensitivity [1/m4] maps, calculated for the preferable electrode configurations, the measurements’ specificity to the stenosis degree might be inadequate and should be further studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.