Abstract
Ionotropic gelation is particularly appealing for the formation of hydrogels because it takes place under mild conditions, is not thermoreversible, and does not involve toxic chemicals. A well-known example is the gelation of alginate in the presence of calcium ions, which is at the base of numerous applications involving this polymer. In this study, alginate-derived oligosaccharides were converted into acrylamide- and methacrylamide-type macromonomers in two steps without resorting to protective group chemistry. They were then copolymerized with 2-hydroxyethylmethacrylamide in aqueous solution to yield high molar mass biohybrid glycopolymers containing between 25 and 52% by mass of oligosaccharide graft chains. A comparative kinetic study showed that both acrylamide- and methacrylamide-type macromonomers reacted since the early stages of the copolymerization, but that the mole fraction in the polymer was smaller than in the feed up to 50-60% conversion and increased markedly afterward. This effect was slighter for the methacrylamide-type macromonomer though. Copolymers carrying oligosaccharide chains with 16-20 repeating units were synthesized and used for a gelation experiment: When dialyzed against CaCl(2) 0.5 mol L(-1), the polymer carrying (1→4)-α-l-guluronan residues led to a soft isotropic self-standing transparent hydrogel, while the polymer carrying (1→4)-β-d-mannuronan residues gave a loose opaque gel. This study demonstrates that alginate-extracted oligosaccharides and aqueous radical polymerization can be combined for the flexible design of biohybrid glycopolymers capable of ionotropic gelation under very mild conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.