Abstract
Supergene enriched iron ore deposits in Brazil are typically blanketed by goethite-cemented breccias that form a protective duricrust known as canga. Moderately hard, well consolidated, permeable and resistant to erosion and chemical weathering, the canga blanket protects the relatively friable iron ore below. The protective canga horizons in the Carajás and Quadrilátero Ferrífero mineral provinces represent some of the longest-lived, continuously exposed land surfaces on Earth, and their formation is essential to supergene iron ore enrichment and preservation. Remarkably, the iron-rich duricrusts that have developed in Brazilian tropical rainforest environments, i.e, Carajás, yield geochronological results that indicate that these ancient erosion-resistant surfaces continue to evolve today. Active biogeochemical iron cycling is essential for the ‘self-healing’ cementation/re-cementation occurring in canga, suggesting that recurrent iron reduction and subsequent oxidation are responsible for canga evolution. Macroscopic biological features in canga including ferruginised plant roots and termite tracks have been linked to the biogeochemical cycling of iron. The ‘organic’ textures in canga can be traced to the microscopic scale, preserving fossilised bacterial cell envelopes and permineralised biofilms. At the canga surface, naturally rare and endemic rupestrian plant species carve out an existence, commonly in the absence of soil. Growth of grasses also promotes metal cycling highlighting that the rhizosphere contributes to canga evolution. The fossilisation of microbial biofilms and rhizosphere horizons consolidates canga, affecting its permeability, limiting water transport and enhancing biogeochemical cycling. The development of canga has been essential for the formation, preservation, and discovery of iron ore deposits, and its restoration will ultimately be required for mined land remediation of these unique ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.