Abstract

The current study describes the biogenic synthesis of two metal oxides zinc oxide (ZnO), aluminum oxide (Al2O3) nanoparticles using Camellia sinensis, and Origanum vulgare L. leaves extract, respectively. The synthesized metal oxide nanoparticles were investigated using spectroscopic and microscopic techniques to confirm the formation of their nanostructures. Accurate and precise spectrofluorometric probes were proposed for the quantification of Ofloxacin (OFX) and Ciprofloxacin (CPFX) in their bulk and commercial formulations. The extraordinary properties of Zinc oxide and aluminum oxide nanoparticles (ZnONPs and Al2O3NPs) enhance the fluorescence intensity in the presence of 0.5 mL and 1.0 mL of sodium dodecyl sulfate (SDS, 1.0% w/v) as organizing agent for the detection of OFX and CPFX, respectively. The optical detection of both drugs at λex/em range 250-700 nm displayed linearity with a main correlation coefficient >0.999 at 1-300 (OFX-SDS-ZnONPs) and 0.5-100 (OFX-SDS-Al2O3NPs) ng mL-1,10-400 (CPFX-SDS-ZnONPs) and 0.1-50 (CPFX-SDS-Al2O3NPs) ng mL-1. The detection and quantification limits were found to be 0.04, 0.03, and 0.02, 0.04 ng mL-1, 0.13, 0.10, and 7.24, 0.09 ng mL-1 for the above-mentioned fluorescence systems, respectively. The suggested spectrofluorometric probes were validated and potentially applied for the estimation of OFX and CPFX in their bulk and commercial formulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call