Abstract

The utilisation of peel extracts for the biogenic synthesis of nanoparticles has garnered attention because of their economical and environmentally friendly attributes, along with their potential for large-scale production. Among the metallic nanoparticles, silver is highly efficient against various pathogens, biocompatible and easy to incorporate into medicinal applications. This investigation focuses on the use of Solanum tuberosum peel extract (commonly known as potato peel), for formation of silver nanoparticles. UV–visible spectrometry revealed a distinctive AgNP peak at 471 nm, while XRD analysis confirmed the crystalline nature of nanosilver, featuring an average crystallite size of 13.65 nm. Additionally, FESEM imaging revealed a nearly spherical surface morphology of the AgNPs, with notable clusters. Significant FTIR peaks indicated the presence of phytoconstituents, which acted as effective reducing agents during the AgNP synthesis. To evaluate the antibacterial efficacy, the synthesised AgNPs were evaluated using the agar-well diffusion method against six bacterial strains, including both gram-positive and gram-negative strains, with concentrations of 100, 500 and 1000 µg/ml. The results were compared to streptomycin (control), which exhibited the most substantial inhibition zone at a concentration of 1000 µg/ml, for Staphylococcus aureus (8 mm), Streptococcus pneumoniae (10 mm), Streptococcus anginosus (10 mm), Bacillus subtilis (10 mm), Pseudomonas aeruginosa (12 mm) and Escherichia coli (8 mm) were observed. This study highlights an innovative approach to repurposing frequently produced biowaste (potato peel) into functional nanomaterials possessing significant antibacterial properties, thus underscoring a novel strategy for waste disposal and the environmentally responsible production of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.