Abstract

Biogenic synthesis of silver nanoparticles (AgNPs) is more eco-friendly and cost-effective approach as compared to the conventional chemical synthesis. Biologically synthesized AgNPs have been proved as therapeutically effective and valuable compounds. In this study, the four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the biogenic synthesis of AgNPs. Agar well diffusion assay revealed to determine the antibacterial activity of all biogenically synthesized AGNPs showed that P. aeruginosa AgNPs possessed significantly high (p < 0.05) antibacterial potential against all tested isolates. The one-way ANOVA test showed that that P. aeruginosa AgNPs showed significantly (p < 0.05) larger zones of inhibition (ZOI: 19 to 22 mm) compared to the positive control (rifampicin: 50 µg/mL) while no ZOI was observed against negative control (Dimethyl sulfoxide: DMSO). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) concentration against four test strains also showed that among all biogenically synthesized NPs, P. aeruginosa AgNPs showed effective MIC (3.3-3.6 µg/mL) and MBC (4.3-4.6 µg/mL). Hence, P. aeruginosa AGNPs were characterized using visual UV vis-spectroscopy, X-ray diffractometer (XRD), fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The formation of peak around 430 nm indicated the formation of AgNPs while the FTIR confirmed the involvement of biological molecules in the formation of nanoparticles (NPs). SEM revealed that the NPs were of approximately 40 nm. Overall, this study suggested that the biogenically synthesized nanoparticles could be utilized as effective antimicrobial agents for effective disease control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.