Abstract

A bioreductive capacity of a plant, Terminalia arjuna leaf extract, was utilized for preparation of selenium nanoparticles. The leaf extract worked as good capping as well as stabilizing agent and facilitated the formation of stable colloidal nanoparticles. Resulting nanoparticles were characterized using UV-Vis spectrophotometer, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD), respectively. The colloidal solution showed the absorption maximum at 390 nm while TEM and selected area electron diffraction (SAED) indicated the formation of polydispersed, crystalline selenium nanoparticles of size raging from 10 to 80 nm. FT-IR analysis suggested the involvement of O-H, N-H, C=O, and C-O functional group of the leaf extract in particle formation while EDAX analysis indicated the presence of selenium in synthesized nanoparticles. The effect of nanoparticles on human lymphocytes treated with arsenite, As(III), has been studied. Studies on cell viability using MTT assay and DNA damage using comet assay revealed that synthesized selenium nanoparticles showed protective effect against As(III)-induced cell death and DNA damage. Chronic ingestion of arsenic infested groundwater, and prevalence of arsenicosis is a serious public health issue. The synthesized benign nanoselenium can be a promising agent to check the chronic toxicity caused due to arsenic exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.