Abstract

Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.