Abstract

Background: Freeze-tolerant animals undergo significant physiological and biochemical changes to overcome challenges associated with prolonged whole-body freezing. In wood frog Rana sylvatica (now Lithobates sylvaticus), up to 65% of total body water freezes in extracellular ice masses and, during this state of suspended animation, it is completely immobile and displays no detectable brain, heart, or respirometry activity. To survive such extensive freezing, frogs integrate various regulatory mechanisms to ensure quick and smooth transitions into or out of this hypometabolic state. One such rapid and reversible regulatory molecule capable of coordinating many aspects of biological functions is microRNA. Herein, we present a large-scale analysis of the biogenesis and regulation of microRNAs in wood frog liver over the course of a freeze–thaw cycle (control, 24 h frozen, and 8 h thawed). Methods/Results: Immunoblotting of key microRNA biogenesis factors showed an upregulation and enhancement of microRNA processing capacity during freezing and thawing. This was followed with RT-qPCR analysis of 109 microRNA species, of which 20 were significantly differentially expressed during freezing and thawing, with the majority being upregulated. Downstream bioinformatics analysis of miRNA/mRNA targeting coupled with in silico protein–protein interactions and functional clustering of biological processes suggested that these microRNAs were suppressing pro-growth functions, including DNA replication, mRNA processing and splicing, protein translation and turnover, and carbohydrate metabolism. Conclusions: Our findings suggest that this enhanced miRNA maturation capacity might be one key factor in the vital hepatic miRNA-mediated suppression of energy-expensive processes needed for long-term survival in a frozen state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.