Abstract

Biofouling has induced serious problems in various industrial fields such as marine structures, bio materials, microbially induced corrosion (MIC) etc. The effects of various metals on biofouling have been investigated so far and the mechanism has been clarified to some extent(1,2), and we proposed that Fe ion attracted lots of bacteria and formed biofilm very easily(3). In this study, we investigated the possibility for biofouling of Pseudomonas aeruginosa on various metal oxides such as Fe2O3, TiO2, WO3, AgO, Cr2O3 etc. And in addition of such a model experiment on laboratory scale, they were immersed into actual sea water as well as artificial sea water. As for the preparation of metal oxides, commercial oxide powders were used as starting material and those whose particle sizes were under 100 micrometers were formed into pellets by a press. Some of them were heated to 700 °C and sintered for 10 hours at the temperatures. After the calcinations, they were immersed into the culture of P. aeruginosa at 35 °C in about one week. After the immersion, they were taken out of the culture and the biofouling behaviors were observed by optical microscopy, low pressure scanning electron microscopy (low pressure SEM) etc. Biofouling is generally classified into several steps. Firstly, conditioning films composed of organic matters were formed on specimens. Then bacterial were attached to the specimen's surfaces, seeking for conditioning films as nutrition. Then bacteria formed biofilm on the specimens. In marine environment, more larger living matters such as shells etc would be attached to biofilms. However, in the culture media, only biofilms were formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call