Abstract

Nutritional insecurity is a major threat to the world’s population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.

Highlights

  • Nutritional security is the key to improve the health status of the world’s population as mankind is primarily dependent on plant-based diets

  • Millets are nutritionally superior to rice and wheat as they contain a high amount of proteins, dietary fibers, iron, zinc, calcium, phosphorus, potassium, vitamin B, and essential amino acids (Hegde et al, 2005; Saleh et al, 2013)

  • Utilizing the functional potential of comparative genomics, high tryptophan finger millet genotypes were identified from global collection using genic simple sequence repeat (SSR) for Opm genes derived from expressed sequence tag (EST) sequences of rice, maize, and sorghum

Read more

Summary

Introduction

Nutritional security is the key to improve the health status of the world’s population as mankind is primarily dependent on plant-based diets. Millets are nutritionally superior to rice and wheat as they contain a high amount of proteins, dietary fibers, iron, zinc, calcium, phosphorus, potassium, vitamin B, and essential amino acids (Hegde et al, 2005; Saleh et al, 2013). Millets exhibit vast genetic variability for key mineral elements like, iron, zinc, and calcium when compared to other cereal crops (Muthamilarasan and Prasad, 2015).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call