Abstract

When, for an otherwise unbounded fluid, the unique irrotational flow compatible with the instantaneous motion of an immersed body has been calculated, it is straightforward to deduce the pressure field from the unsteady form of Bernoulli's equation if the body is rigid. On the other hand, if the body is flexible, a somewhat subtle analysis is required to determine the time derivative of velocity potential, ∂ϕ/∂t, which occurs in that equation. This is because no simple relationship exists between the instantaneous form of ϕ and its form at a nearby instant.In the case of two-dimensional flow, however, the two forms of ϕ for a flexible body may be related, not in general by a simple translational and/or rotational mapping as for a rigid-body motion, but by a conformal mapping. The example of a flexible flat plate is used here to illustrate this approach to calculating the pressure field.In the analysis of balistiform motion by elongated-body theory (Lighthill & Blake 1990), one part of the propulsive force on the fish has magnitude equal to P, the area integral of the pressure field just described. This area integral is shown in §3 below to take a simple form or for E, so that P itself is also not enhanced. For the relevance of these findings to the efficiency of balistiform motion, see Lighthill & Blake (1990).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.