Abstract
Background Emerging threat of drug resistance among pathogens causing ventilator-associated pneumonia (VAP) has resulted in higher hospital costs, longer hospital stays, and increased hospital mortality. Biofilms in the endotracheal tube of ventilated patients act as protective shield from host immunity. They induce chronic and recurrent infections that defy common antibiotics. This study intended to determine the biofilm produced by pathogens causing VAP and their relation with drug resistance. Methods Bronchoalveolar lavage and deep tracheal aspirates (n = 70) were obtained from the patients mechanically ventilated for more than 48 hours in the intensive care units of Tribhuvan University Teaching Hospital, Kathmandu, and processed according to the protocol of the American Society for Microbiology (ASM). Antibiotic susceptibility testing was done following Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines. Biofilm formation was determined using the microtiter plate method described by Christensen and modified by Stepanovoic et al. Results Significant microbial growth was seen in 78.6% of the total samples with 52.7% monomicrobial, 45.5% polymicrobial, and 1.8% fungal infection. Among the 71 isolates obtained, bulk was gram-negative (n = 64, 90.1%). Pseudomonas aeruginosa (31.0%) was the predominant isolate followed by Acinetobacter calcoaceticus baumannii complex (16.9%), Klebsiella pneumoniae (16.9%), Citrobacter freundii (15.5%), Staphylococcus aureus (7.0%), Escherichia coli (5.6%), Citrobacter koseri (2.8%), Enterococcus faecalis (1.4%), Burkholderia cepacia complex (1.4%), and Candida albicans (1.4%). Of the total isolates, 56.3% were biofilm producers. Multidrug-resistant (MDR) organisms, extended-spectrum β-lactamase (ESBL), and metallo-β-lactamase (MBL) producers were preeminent among the biofilm producers. The highest producer of biofilm was P. aeruginosa (19.7%). Among gram-negative biofilm producers, 42.2% were MDR, 21.9% were ESBL producers, and 7.8% were MBL producers. Conclusion Gram-negative nonfermenter bacteria account for the bulk of nosocomial pneumonia. MDR, ESBL, and MBL production was preponderant among the biofilm producers. The rampant spread of drug resistance among biofilm producers is summoning novel interventions to combat multidrug resistance.
Highlights
Nosocomial infections are those infections occurring after more than 48 hours of hospital admission [1]
Ventilator-associated pneumonia (VAP), a form of hospital-associated pneumonia (HAP), specially refers to pneumonia occurring in patients mechanically ventilated for more than 48 hours after tracheal intubation [2]
Our study provides an insight to the prevalence of biofilm formation in ventilator-associated pneumonia (VAP)
Summary
Nosocomial infections are those infections occurring after more than 48 hours of hospital admission [1]. VAP is characterized by the presence of lung infiltration (new or progressive), fever, altered white blood cell count, changes in sputum characteristics, and occurrence of a causative agent [3]. These infections account for the most complications (9–27%) associated with patients in intensive care units (ICUs) receiving mechanical ventilation [4]. Biofilms in the endotracheal tube of ventilated patients act as protective shield from host immunity. They induce chronic and recurrent infections that defy common antibiotics. The rampant spread of drug resistance among biofilm producers is summoning novel interventions to combat multidrug resistance
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have