Abstract

Mycobacterium abscessus is a biofilm-forming, non-tuberculous mycobacterium that is highly resistant to antibiotics. Bacterial efflux pumps contribute to biofilm formation, export of biofilm-associated lipids and antibiotic tolerance. The Resistance Nodulation Cell Division (RND) and ATP-Binding Cassette (ABC) families of efflux pumps export lipids to the mycobacterial cell surface. 1-(1-naphthyl methyl)-piperazine (NMP) is a chemosensitizer that causes membrane destabilization and is an inhibitor of RND efflux pumps. The effects of NMP on biofilm formation and lipid metabolism in M. abscessus biofilms have not been investigated. Plumbagin (PLU) is an inhibitor of ABC efflux pumps that has not been studied for its effects on antibiotic tolerance in M. abscessus biofilms. In this study, we report that the efflux pump inhibitors NMP and PLU inhibit biofilm formation by 50% at sub-MIC levels. We show that NMP inhibits the incorporation of the radiolabeled long-chain fatty acid 14C-palmitate into glycopeptidolipids in cell surface lipids of log-phase M. abscessus. NMP also inhibits the utilization of the radiolabel in the biosynthesis of phosphatidylethanolamine in the cell surface and cellular lipids of M. abscessus cells in log-phase and in biofilms. Incorporation of the radiolabel into cardiolipin in the cellular lipids of M. abscessus biofilms was inhibited by NMP. The incorporation of 14C-acetate into cell surface phosphatidylethanolamine in log-phase and biofilm cells was also inhibited by NMP. Triacylglycerol biosynthesis using 14C-palmitate and 14C-acetate in cellular lipids of log-phase and biofilm cells was increased several folds by NMP. Efflux pump activity in M. abscessus cells was inhibited by 97% and 68% by NMP and PLU respectively. NMP and PLU caused 5-fold decreases in the minimum inhibitory concentrations of ciprofloxacin and clarithromycin against M. abscessus. Our results demonstrate that NMP and PLU affect important physiological processes in M. abscessus associated with its pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.