Abstract

Background: Efflux pump is a significant resistance mechanism in Staphylococcus aureus. A total of 100 patients with bacteremia from Shahid Beheshti University Hospitals of Tehran in Iran were tested for the expression of efflux pump genes, contributing to S. aureus antimicrobial resistance. Objectives: This study was conducted to identify antibiotic resistance pattern, and to evaluate the inhibitory effect of efflux pump, MIC of ciprofloxacin, and expression levels of norA, norB, and norC efflux pump genes in the presence of an efflux pump inhibitor against MDR S. aureus. Methods: A total of 100 MRSA isolates were investigated in different hospitals of Shahid Beheshti University of Medical Sciences from April 2017 - 2018. Owing to new consensus guidelines from the Clinical and Laboratory Standards Institute (CLSI), both the Kirby-Bauer disk diffusion test and micro-dilution method were used to evaluate antimicrobial susceptibility. Efflux pump activity using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was identified as a chemical efflux pump inhibitor. E-test was used to determine vancomycin-resistant antibiotic. Broth micro-dilution method for S. aureus isolates resistant to ciprofloxacin has been developed for minimum inhibitory concentration (MIC) of ciprofloxacin and CCCP and their composition. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to investigate the expression level of norA, norB, and norC efflux pump genes. Results: A total of 38 of 45 MRSA isolates (84.4%) showed resistance to ciprofloxacin. Moreover, 100% of isolates had the norA and norB genes. Further, 95% of S. aureus isolates had the norC gene. According to this study, ciprofloxacin MIC has decreased by CCCP compared to ciprofloxacin. There was an increase in the expression level of norA, norB, and norC efflux pump genes in methicillin-resistant and ciprofloxacin-resistant S. aureus strains based on RT- PCR. In this study, four different spA types were obtained as the most prevalent type of spA by t037and t790 (23.3%) and t030 (14.1%) and t044 (12.2%). Conclusions: This study indicates that the prevalence of ciprofloxacin-resistant S. aureus strains has a rising trend among MRSA clinical isolates. The ability of S. aureus isolates to be converted into drug-resistant strains using efflux pump mechanism has become a widespread concern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call