Abstract

Non-aeration microalgae-bacteria biofilm has attracted increasing interest for its application in low cost wastewater treatment. However, it is unclear the quantified biofilm characteristics dynamics and how biofilm bioactivity affects performance and nitrogen metabolisms during wastewater treatment. In this work, a push-flow microalgae-bacteria biofilm reactor (PF-MBBfR) was developed for aeration-free greywater treatment. Comparatively, organic loading at 1.27 ± 0.10 kg COD/(m3⋅d) gave the highest biofilm concentration, density, specific oxygen generation (SOGR) and consumption rates (SOCR), and pollutants removal rates. Contributed to low residual linear alkylbenzene sulfonates and bioactivity, reactor downstream showed low bacteria and protein concentrations and SOCR (12.8 mg O2/g TSS·h), but high microalgae, carbohydrate, biofilm density, SOGR (49.4 mg O2/g TSS·h) and pollutants removal rates. Dissolved organic nitrogen (DON) showed higher molecular weight, CHONS and fraction with 4 atoms of N in reactor upstream. Most of nitrogen was fixed to newly synthesized biomass during assimilation process by related functional enzymes, minor contributed to denitrification due to low N2 emission. High nitrogen assimilation by microalgae showed high SOGR, which favored efficient multiple pollutants removal and reduced DON emission. Our findings favor the practical application of PF-MBBfR based on biofilm bioactivity, enhancing efficiency and reducing DON emission for low- energy-input wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.