Abstract

The liver performs a wide range of biological functions that are essential to body homeostasis. Damage to liver tissue can result in reduced organ function, and if chronic in nature can lead to organ scarring and progressive disease. Currently, donor liver transplantation is the only longterm treatment for end-stage liver disease. However, orthotopic organ transplantation suffers from several drawbacks that include organ scarcity and lifelong immunosuppression. Therefore, new therapeutic strategies are required. One promising strategy is the engineering of implantable and vascularized liver tissue. This resource could also be used to build the next generation of liver tissue models to better understand human health, disease and aging in vitro. This article reviews recent progress in the field of liver tissue bioengineering, including microfluidic-based systems, bio-printed vascularized tissue, liver spheroids and organoid models, and the induction of angiogenesis in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.