Abstract

In many marine invertebrates, a latitudinal cline in egg size is considered an adaptive response to a decrease in temperature, and enhances the energetic fitness of their larvae at hatching. However, the amount of energy carried over from the egg to the larval stage depends on the metabolic efficiency of egg development. In the present study, eggs of the brachyuran crab Cancer setosus were sampled for their dry mass ( DM), carbon ( C), nitrogen ( N), and fatty acid ( FA) content throughout development from blastula stage until hatching of zoea 1-larvae at Antofagasta (23°S) and Puerto Montt 41°S (Chile) under different temperature treatments (12, 16 and 19 °C). Hatching zoea 1 larvae contained 60 ± 3% of the initial blastula egg C content, regardless of site or temperature. However, the ontogenetic decrease in egg C content was to a significantly higher extend based on the utilization of energy-rich FA at 12 °C (− 1.16 µg/egg) compared to the 19 °C treatments in Antofagasta and Puerto Montt (− 0.63 to − 0.73 µg FA per egg). At 19 °C egg-metabolism was based to a substantial extend on protein, which allowed for the saving of energy-richer lipids. We conclude that the production of larger eggs with high FA content appears to be adaptive not only to fuel the larval development, but is also a response to the prolonged egg developmental times at lower temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.