Abstract

The simplification of localized surface plasmon resonance (LSPR) detection can further promote the development of optical biosensing application in point-of-care testing. In this study, we proposed a simple light emitting diode (LED) based single-wavelength LSPR sensor modulated with bio-electron transfers for the detection of electroactive biomolecules. Indium tin oxide electrode loaded with nanocomposites of polyaniline coated gold nanorod was used as LSPR chip, and the applied electric potential was scanned at the LSPR chip for single-wavelength LSPR biosensing. Under the scanning of applied potentials, biological electron transfer of redox reaction was employed to demonstrate the bioelectronic modulation of single-wavelength LSPR for selective electroactive biomolecule detection. Without any additional recognition material, electroactive biomolecules uric acid and dopamine were detected directly with a sensitivity of 5.05 μmol/L and 7.11 μmol/L at their specific oxidation potentials, respectively. With the simplified optical configuration and selective bioelectronic modulation, the single-wavelength LSPR sensor is promising for the development of simple, low-cost, and high specificity optical biosensor for point-of-care testing of electroactive biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.