Abstract
Microbial desalination cell (MDC) is a new approach for the synergy in bioelectricity generation, desalination and organic waste treatment without additional power input. However, current MDC systems cause salt accumulation in anodic wastewater and sludge. A microbial capacitive desalination cell (MCDC) with dewatered sludge as anodic substrate was developed to address the salt migration problem and improve the sludge recycling value by special designed-membrane assemblies, which consisted of cation exchange membranes (CEMs), layers of activated carbon cloth (ACC), and nickel foam. Experimental results indicated that the maximum power output of 2.06W/m3 with open circuit voltage (OCV) of 0.942V was produced in 42days. When initial NaCl concentration was 2g/L, the desalinization rate was about 15.5mg/(L·h) in the first 24h, indicating that the MCDC reactor was suitable to desalinize the low concentration salt solution rapidly. The conductivity of the anodic substrate decreased during the 42-day operation; the CEM/ACC/Ni assemblies could effectively restrict the salt accumulation in MCDC anode and promote dewatered sludge effective use by optimizing the dewatered sludge properties, such as organic matter, C/N, pH value, and electric conductivity (EC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.