Abstract
The riparian vegetation buffer zone is an important component of riverbank ecosystems, playing a crucial role in soil consolidation and slope protection. In this study, the riparian vegetation buffer zones in the Tongnan section of the Fujiang River Basin were selected as the research object. Surveys and experiments were conducted to assess the species composition and the soil and water conservation effectiveness of the riparian vegetation buffer zone. There are a total of 35 species, mainly comprising angiosperms and ferns. The dominant species include Cynodon dactylon, Setaria viridis, Phragmites australis, Erigeron canadensis, and Melilotus officinalis. The Patrick richness index (R) and Shannon–Wiener diversity index (H) are more significantly influenced by the types of land use in the surrounding area, whereas the impact on the Simpson diversity index (D) and Pielou uniformity index (E) is comparatively less pronounced. When the root diameter is less than 0.2 mm, the tensile strength of Cynodon dactylon roots is the highest. For root diameters larger than 0.2 mm, Melilotus officinalis roots exhibit the highest tensile strength. The presence of plant root systems significantly reduces erosion, delaying the time to reach maximum erosion depth by 1–4 min, decreasing erosion depth by 9–38 mm, and reducing the total amount of erosion by 20.17–58.90%. The anti-scouribility effect of Cynodon dactylon is significantly better than that of Setaria viridis. The root system notably enhances soil shear strength, delaying the shear peak by 0.26–4.8 cm, increasing the shear peak by 4.76–11.37 kPa, and raising energy consumption by 23.76–46.11%. Phragmites australis has the best resistance to shear, followed by Erigeron canadensis, with Melilotus officinalis being the least resistant. Therefore, to balance the anti-scouribility effect and shear resistance of plant roots, it is recommended to use a combination of Cynodon dactylon and Phragmites australis for shallow-rooted and deep-rooted planting. This approach enhances the water and soil conservation capacity of riverbanks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.