Abstract

We have developed a new pharmaceutical, ibandronic acid (IBA), and preliminarily demonstrated that it is an efficient bisphosphonate for the diagnosis and treatment of bone metastases. This study aims to examine the biodistribution and internal dosimetry of the diagnostic 68 Ga-DOTA-IBA in patients. 68 Ga-DOTA-IBA was intravenously injected based on 1.81-2.57 MBq/Kg into 8 patients with bone metastases. Each patient underwent 4 sequential static whole-body PET scans at 0.1, 0.45, 0.8, and 1.8 hours after injection. The acquisition time for each scan was 20 minutes with 10 bed positions. Image registrations and volume of interest delineation were first performed on Hermes, whereas percentage injected activity (%IA), absorbed dose, and effective dose were measured for source organs, using OLINDA/EXM v2.0. Dosimetrics for the bladder was based on a bladder voiding model. No adverse effects were observed on all patients. After the injection, 68 Ga-DOTA-IBA rapidly accumulated in bone metastases and cleared from nonbone tissues, as indicated by visual analysis and %IA measured on the sequential scans. High activity uptake was presented in the expected target organs, that is, bone, red marrow, and the drug-excretion organs such as kidneys and bladder. The mean total body effective dose is 0.022 ± 0.002 mSv/MBq. 68 Ga-DOTA-IBA has high bone affinity and is promising in the diagnosis of bone metastases. Dosimetric results show that the absorbed doses for critical organs and total body are within the safety limit and with high bone retention. It also has the potential to be used in 177 Lu-therapy as a theranostic pair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call