Abstract

In this research work, waste of polyethylene terephthalate (PET) was converted into activated carbon and the latter was used in the preparation of a carbon acid catalyst. Waste of PET was converted into activated carbon via carbonization and steam activation, then the activated carbon was sulfonated using fuming sulfuric acid in order to produce the carbon acid catalyst. The prepared carbon acid catalyst was tested for esterification of high acid value non-edible oil, Silybum marianum L. seed oil (SMSO) via optimized protocol. Amount of the carbon acid catalyst, methanol to oil molar ratio, temperature and time were the experimental variables optimized. Esterification of SMSO with methanol using the prepared carbon acid catalyst reduced its parent acid value (20.0mgKOH/g) to the acceptable limits for base-catalyzed transesterification (<2.0mgKOH/g) using 6.0% w/w of the catalyst, 15:1 methanol to oil molar ratio, 68°C reaction temperature and 180min of reaction. The performance of the catalyst was reduced gradually during its recycling and reached to 60.0% at the 5th cycle. Kinetics of esterification of SMSO using the prepared carbon acid catalyst followed pseudo first order kinetics, and the activation energy was found to be 70.98kJ/mol. The esterified oil was converted to biodiesel through optimized base-catalyzed transesterification with methanol. Biodiesel with (96.98% yield and purity of 96.69% w/w) yield was obtained using 0.80% KOH w/w, 6:1 methanol to oil molar ratio, 60°C reaction temperature, 75min of reaction and 600rpm rate of stirring. The biodiesel properties were within the recommended biodiesel standards as prescribed by ASTM D 6751 and EN 14214. Transesterification of the esterified oil was found to fellow first order kinetics, and the activation energy was calculated to be 17.92kJ/mol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call