Abstract

Dibenzothiophene (DBT) is the most excessive and refractory sulfur compound in fossil fuels. The methods for removing DBT, using bacteria, were twofold: the first one involved the destruction of the carbon skeleton; the second, the use of a sulfur-specific process of biodesulfurization, without cleaving the carbon ring. Because the second method does not degrade the value of the fuel, it is considered by most researchers to be the method of choice. Bacteria used for this study, were obtained from the soil collected from a field that contained waste water from a refinery. Using GC/MS, it was confirmed that the metabolic pathway used by this bacterium, involved a sulfur-specific process of biodesulfurization, named the ‘4S pathway’. This strain appears to have the ability to remove the organic sulfur from thiophenic compounds over a wide temperature range from 25 to 45°C. And the half time of the whole cells desulfurization activity was 32 days, three times more than Rhodococcus erythropolis IGTS8. With the excellent stability, it may have industrial application for biodesulfurization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.