Abstract
This work develops a halophilic biocarriers-MBR for saline pharmaceutical wastewater treatment. The system has effectively treated the ampicillin-containing saline wastewater for 32 days, when the ampicillin concentration is lower than 20 mg/L. The system can tolerate the saline organic wastewater with a reasonable biodegradability (removals of COD over 75%) when the ampicillin concentration is 50 mg/L. The system has a bad performance in biodegradation (COD removals around 60–70%) and fouled within 16 days at a high ampicillin concentration of 100 mg/L. At high transmembrane pressures over 30 KPa, some ampicillin molecules may permeate through the membrane causing decreases in the ampicillin removal. The concentrations of protein and carbohydrate in EPS and SMP have increased over time and with increasing the ampicillin concentration. The method of biofouling control in MBR for the ampicillin situations has been proposed based on monitoring the concentrations of EPS and SMP. The drying-assisted monitoring of membrane biofoulants has showed a better efficiency than the monitoring of transmembrane pressure for membrane anti-biofouling in the treatment of pharmaceutical saline wastewaters where a spectroscopic detection can be hardly applied. This work may benefit relative research works for the control of biodegradation performance and membrane biofouling to better treat saline pharmaceutical wastewaters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.