Abstract

Three salt-tolerant bacteria which degraded xanthan were isolated from various water and soil samples collected from New Jersey, Illinois, and Louisiana. The mixed culture, HD1, contained aBacillus sp. which produced an inducible enzyme(s) having the highest extracellular xanthan-degrading activity found. Xanthan alone induced the observed xanthan-degrading activity. The optimum pH and temperature for cell growth were 5–7 and 30–35°C, respectively. The optimum temperature for activity of the xanthan-degrading enzyme(s) was 35–45°C, slightly higher than the optimum growth temperature. With a cell-free enzyme preparation, the optimum pH for the reduction of solution viscosity and for the release of reducing sugar groups were different (5 and 6, respectively), suggesting the involvement of more than one enzyme for these two reactions. Products of enzymatic xanthan degradation were identified as glucose, glucuronic acid, mannose, pyruvated mannose, acetylated mannose and unidentified oligo- and polysaccharides. The weight average molecular weight of xanthan samples shifted from 6.5·106 down to 6.0·104 during 18 h of incubation with the cell-free crude enzymes. The activity of the xanthan-degrading enzyme(s) was not influenced by the presence or absence of air or by the presence of Na2S2O4 and low levels of biocides such as formaldehyde (25 ppm) and 2,2-dibromo-3-nitrilopropionamide (10 ppm). Formaldehyde at 50 ppm effectively inhibited growth of the xanthan degraders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call