Abstract

The biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and seven fungi species, including imperfect strains and higher level lignolitic species, is compared in a 90-day laboratory experiment using a natural, not-fertilized soil contaminated with 10% crude oil. The natural microbial soil assemblage isolated from an urban forest area was unable to significantly degrade crude oil, whereas pure fungi cultures effectively reduced the residues by 26–35% in 90 days. Normal alkanes were almost completely degraded in the first 15 days, whereas aromatic compounds (phenanthrene and methylphenanthrenes) exhibited slower kinetics. Aspergillus terreus and Fusarium solani, isolated from oil-polluted areas, produced the more efficient attack of aliphatic and aromatic hydrocarbons, respectively. Overall, imperfect fungi isolated from polluted soils showed a somewhat higher efficiency, but the performance of unadapted, indigenous, lignolitic fungi was comparable, and all three species, Pleurotus ostreatus, Trametes villosus and Coriolopsis rigida, effectively degraded aliphatic and aromatic components. The simultaneous, multivariate analysis of 22 parameters allowed the elucidation of a clear reactivity trend of the oil components during biodegradation: lower molecular weight n-alkanes > phenanthrene > 3-2-methylphenanthrenes > intermediate chain length n-alkanes > longer chain length n-alkanes > isoprenoids ≈9-1-methylphenanthrenes. Irrespective of the individual degrading capacities, all fungi species tested seem to follow this decomposition sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.