Abstract

Three biodegradable wound dressing based on binary Collagen (COL), Hyaluronic acid (HA) crosslinked loaded with silver nanoparticles (AgNPs), Gentamicin (GENT) and AgNPs/GENT successfully prepared using freeze drying technique. Chemical evaluations for synthesized membranes were carried out using FTIR- ATR. While physical properties were evaluated through swelling and degradation percent. Antibacterial activity was evaluated against G+, G-, yeast and fungi. Finally, cytotoxicity and wound healing evaluations were carried out against skin fibroblast normal cell line, while anti-inflammatory evaluated using RAW 264.7 macrophage cell line. The three produced membrane showed physically interaction between polymer network and the loaded antibiotic. Swelling properties showed superior results for three membranes. Degradability of prepared sheets was rapidly no more than three days. Toxicity evaluations and anti-inflammatory showed superior results for all examined samples except mixed with AgNPs and Gentamicin (GENT). Antibacterial activity showed resistance to G+, G- and yeast. All prepared sheet showed safe towards cell except COL/HA/AgNPs/GENT. Wound healing studied showed efficient of both COL/HA/AgNPs and COL/HA/GENT compared to blank and mixed membrane COL/HA/AgNPs/GENT. The obtained results recommended COL/HA loaded individually either AgNPs or Gentamicin (GENT) as antibacterial and wound healing sheet rather than mixed prepared membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.