Abstract

A novel three-dimension micro-device was formulated to control delivery of 5-fluorouracil (5-FU) for the treatment of solid tumors. The poly-(lactic-co-glycolic) acid (PLGA), which is both biocompatible and biodegradable, was used as carrier material. The characteristics of drug release in vitro and in vivo and the performance of the micro-device after implantation in tumor bearing mice were evaluated. A constant release profile from in vitro test was obtained for a period of 7 days, and it correlated well with the in vivo release profile. In the distribution experiment of 5-FU micro-device, it was demonstrated that 5-FU remained in the tumor tissues for more than 7 days after implantation. Likewise, we found that the 5-FU concentration in tumor correlated well with the in vivo release. Tumors treated with 5-FU loaded micro-device of three different dosages showed significant tumor reduction (P < 0.05) compared with empty control micro-device 7 days after administration. Moreover, the implantation treatment showed enhanced efficacy compared with the intraperitoneal administration with the same dosage. These results suggested that the three-dimensional micro-device may provide a promising local and controlled release drug delivery system, which may enable delivery of multiple drugs for post-surgical chemotherapy against solid tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.