Abstract

A batch reactor process for the abatement of a common pollutant, namely, H2S using Fe3+-malic acid chelate (Fe3+-MA) catalyst has been developed. Further, process modeling and optimization was conducted in the three stages with a view to maximize the H2S conversion: (i) sensitivity analysis of process inputs was performed to select the most influential process operating variables and parameters, (ii) an artificial neural network (ANN)-based data-driven process model was developed using the influential process variables and parameters as model inputs, and H2S conversion (%) as the model output, and (iii) the input space of the ANN model was optimized using the artificial immune systems (AIS) formalism. The AIS is a recently proposed stochastic nonlinear search and optimization method based on the human biological immune system and has been introduced in this study for chemical process optimization. The AIS-based optimum process conditions have been compared with those obtained using the genetic algorithms (GA) formalism. The AIS-optimized process conditions leading to high (≈97%) H2S conversion, were tested experimentally and the results obtained thereby show an excellent match with the AIS-maximized H2S conversion. It was also observed that the AIS required lesser number of generations and function evaluations to reach the convergence when compared with the GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.