Abstract
Artificial Immune Systems, a biologically inspired computing paradigm such as Artificial Neural Networks, Genetic Algorithms, and Swarm Intelligence, embody the principles and advantages of vertebrate immune systems. It has been applied to solve several complex problems in different areas such as data mining, computer security, robotics, aircraft control, scheduling, optimization, and pattern recognition. There is an increasing interest in the use of this paradigm and they are widely used in conjunction with other methods such as Artificial Neural Networks, Swarm Intelligence and Fuzzy Logic. In this chapter, we demonstrate the procedure for applying this paradigm and bio-inspired algorithm for developing software fault prediction models. The fault prediction unit is to identify the modules, which are likely to contain the faults at the next release in a large software system. Software metrics and fault data belonging to a previous software version are used to build the model. Fault-prone modules of the next release are predicted by using this model and current software metrics. From machine learning perspective, this type of modeling approach is called supervised learning. A sample fault dataset is used to show the elaborated approach of working of Artificial Immune Recognition Systems (AIRS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.