Abstract

In the present study Gg-cl-poly(NIPA-co-AA) and Gg-cl-poly(NIPA-co-AA)/-o-MWCNT hydrogels were synthesized using free radical polymerization. We looked into whether combining metformin with diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), would be effective in examining complex formation and analysing the types and intensities of complexes that could result from metformin-diclofenac interactions. The interaction of metformin and diclofenac was studied in vitro at various pH levels and body temperatures. The structure and morphology of the produced hydrogel were characterised using FTIR spectra, SEM analysis, and drug loading tests. As a model drug, the hydrogel was loaded with metformin hydrochloride and sodium diclofenac (DS), and the medicines were released pH-dependently. To explore the drug release kinetics and mechanism, the zero order and first order kinetic models, the Korsemeyar-Peppas model, the Higuchi model, and the Hixson-Crowell model have all been employed. Drug release studies revealed notable characteristics in connection to physiologically predicted pH values, with a high release rate at pH = 9.2. At pH = 9.2, however, both metformin and sodium diclofenac exhibited a Fickian mechanism. Combination treatment may reduce the effective dose of a single drug and hinder metabolic rescue mechanisms. More study is needed to detect any negative effects on individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.