Abstract

In this study, a reproducible urethral injury animal model was developed and the role of the biodegradable drug-eluting urethral stent in limiting urethral stricture formation after urethral injury was evaluated. A total of 22 rabbits were used, and 20 rabbits were randomly chosen to develop urethral injury animal model. Bulbar urethral injury was made by a self-designed explosion device in the 20 rabbits. The urethral injury animal model was then randomly assigned to 2 groups of 10 each, which received a treatment of biodegradable paclitaxel-eluting urethral stent or only end-to-end anastomosis. Other two rabbits served as normal control group. Stents were surgically implanted into the injured urethras of rabbits under direct vision. Reparative effects, including stent degradation, were evaluated by urethroscopy, retrograde urethrography, and histology at different intervals at weeks 4, 8, and 12. In stent-free group, 8 of 10 rabbits developed obvious urethral stricture which was demonstrated by urethroscopy and retrograde urethrography, while in biodegradable paclitaxel-eluting stent group, urethral stricture was absent in all animals (p < 0.05). Histological follow-up indicated that the drug-eluting stents can also minimize the inflammatory reactions and fibrosis formation compared with the stent-free groups. Scanning electron microscope demonstrated that the biodegradable drug-eluting stent can gradually degrade in 12 weeks. The biodegradable paclitaxel-eluting urethral stent is effective in limiting urethral stricture formation after urethral injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.