Abstract

Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.