Abstract

Laboratory reactor systems based on the conventional (aerobic) activated sludge process and on the contact (anaerobic) process were operated almost one year in order to develop a biological process for the degradation of the fire retardant tetrabromobisphenol A (TBBPA) and to find out if its degradation might result in the formation of the endocrine disruptor bisphenol A (BPA). The reactors were fed a TBBPA waste mixture containing also tribromophenol (TBP), and added with contaminated sediments that might have contained indigenous bacteria exposed to these compounds. Various organic compounds were used as potential electron donors to enhance growth of halorespiring bacteria that would debrominate the TBBPA and make it available for further aerobic mineralization. In spite of the various operating strategies applied and the different carbon sources added, no TBBPA biodegradation has been observed and no accumulation of intermediates such as BPA in any of the aerobic or anaerobic reactors has been detected. TBP on the other hand, was found to be easily biodegraded by aerobic cultures simulating the activated sludge process. This was linked to consistent accumulation of bromides, released to the liquid following TBP breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.