Abstract

The effect of concurrent degradation of tetrabromobisphenol A (TBBPA) by the strain Ochrobactrum sp. T under aerobic condition was investigated. The results demonstrated that four extra energy source-addition systems still followed pseudo-first order kinetics. The addition of ethanol or glucose could promote the biodegradation ability of Ochrobactrum sp. T to TBBPA, and 90.1 percent and 77.5 percent of TBBPA (5mgL−1) could be removed with corresponding TBBPA half-lives of 26 and 36h, respectively, after 96h reaction. Comparatively, the degradation efficiency of the sole TBBPA system was only 72.9 percent under the same condition. In contrast, two other co-substrates 2,4,6-tribromophenol (TBP) and bisphenol A (BPA) showed a negative effect on the TBBPA biodegradation, and the degradation efficiencies of TBBPA were achieved as 44.7 percent and 67.4 percent, respectively. For the TBBPA+TBP system, the competitive inhibition for the TBBPA debromination was less than the inhibition of the toxicity to the bacterium. While for the TBBPA+BPA system, the degradation of TBBPA could be promoted at the beginning of the reaction, and was then inhibited slightly with further prolonging of reaction time. This is probably due to the substrates being oxidized, and BPA can consume partial oxygen and provide the electrons during the concurrent biodegradation process. In addition, although higher estrogenic activity could be detected for the debrominated intermediates in TBBPA co-degradation process than the original TBBPA, the estrogenicity of the whole system still decreased finally after 96h degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call