Abstract

Syringyl monomeric units are the most common intermediates encountered during hardwood lignin degradation. In the present study, efficient utilization of syringaldehyde (SAld), syringic acid (SAc) by Burkholderia sp. ISTR5 (R5) has been shown. The proteogenomic analysis of Burkholderia sp. ISTR5 was done to understand the enzymes involved in the degradation of syringaldehyde and syringic acid. Various proteins such as aldehyde dehydrogenase, laccase, and oxidoreductases were highly upregulated during growth on syringaldehyde and syringic acid. R5 completely transformed both the substrates SAld and SAc to other hydrocarbons in 48 h and 24 h, respectively. Moreover, bioconversion of syringyl lignins followed an unusual pathway and accumulated a considerable amount of industrially valuable chemical malic acid in the reaction titer. This study shows the robust chassis of R5 to cope with the aromatic aldehydic stress and simultaneous bioconversion into valuable products for an efficient biorefinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call