Abstract

The synthesis of well-defined carboxylic acid-functionalized glycopolymers prepared via one-step postpolymerization modification of poly(N-[3-aminopropyl] methacrylamide) (PAPMA), a water-soluble primary amine methacrylamide, in aqueous medium is demonstrated. PAPMA was first polymerized via aqueous reversible addition-fragmentation chain transfer polymerization in aqueous buffer using 4-cyanopentanoic acid dithiobenzoate as the chain transfer agent and 4,4′-azobis(4-cyanovaleric acid) (V-501) as the initiator at 70 °C. The resulting well-defined PAPMA was then conjugated with D-glucuronic acid sodium salt through reductive amination in alkaline medium (pH 8.5) at 45 °C. The successful bioconjugation was proven through proton (1H) and carbon (13C) nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis, which indicated near quantitative conversion. A similar bioconjugation reaction was conducted with poly(2-aminoethyl methacrylate) (PAEMA) and poly(2-aminoethyl methacrylate-b-poly(N-[2-hydroxypropyl]methacrylamide) (PAEMA-b-PHPMA). For the PAEMA homopolymers and block copolymers, however, lower conversion was obtained, most likely because of degradation reactions of PAEMA in alkaline medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3052–3061, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.