Abstract

Two nanoformulations with mucoadhesive properties and brain-targeting mechanisms were designed to deliver the anti-Parkinson's drug, ropinirole hydrochloride (RH). In the first formulation, RH and the amphiphilic block copolymer methoxy poly(ethylene glycol)-b-poly(caprolactone) were assembled in a core-shell morphology followed by coating with a mucoadhesive chitosan outer layer producing a multilayer vehicle (MLV). In the second formulation, RH was encapsulated during the polyelectrolyte complexation of two natural polymers, chitosan and alginate producing RH-loaded chitosan-alginate polyelectrolyte (PEC) nanocomplex. Conditions of each formulation were adopted for optimal drug loading. Physico-chemical characterization of the prepared formulations (particle size, polydispersity index and zeta-potential) exhibited stable monodispersed nanoparticles. RH was radiolabeled by I-131 radiotracer in a high-radiochemical yield. Biodistribution and brain targeting of RH from the prepared formulations were studied after administration of 131 I-RH-loaded nanoparticles to albino mice via intranasal and intravenous routs. Elevated brain radioactivity was detected post IN administration of (131 I-RH/PCL-PEG/CS) nanoparticles and (131 I-RH/CS-ALG) nanoparticles comparing with the IN administrated RH solutions (Cmax =2.8 ± 0.3, 2 ± 0.3, 0.93 ± 0.03% radioactivity/g, 1h post administration, respectively). This demonstrated that a relatively high-brain targeting could be achieved via intranasal route of administration of RH-loaded nanoparticles. The proposed models are further potential for application to deliver many other brain-targeting therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call