Abstract
A flexible and transparent resistive switching memory based on a natural organic polymer for future flexible electronics is reported. The device has a coplanar structure of Mg/Ag‐doped chitosan/Mg on plastic substrate, which shows promising nonvolatile memory characteristics for flexible memory applications. It can be easily fabricated using solution processes on flexible substrates at room temperature and indicates reliable memory operations. The elucidated origin of the bipolar resistive switching behavior is attributed to trap‐related space‐charge‐limited conduction in high resistance state and filamentary conduction in low resistance state. The fabricated devices exhibit memory characteristics such as low power operation and long data retention. The proposed biocompatible memory device with transient electrodes is based on naturally abundant materials and is a promising candidate for low‐cost memory applications. Devices with natural substrates such as chitosan and rice paper are also fabricated for fully biodegradable resistive switching memory. This work provides an important step toward developing a flexible resistive switching memory with natural polymer films for application in flexible and biodegradable nanoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.